Openai Websearch MCP

This is a Python-based MCP server that provides OpenAI `web_search` build-in tool.
Author:@ConechoAI
Updated at:

Search & Data Extraction

OpenAI WebSearch MCP Server 🔍

PyPI version Python 3.10+ MCP Compatible License: MIT

An advanced MCP server that provides intelligent web search capabilities using OpenAI's reasoning models. Perfect for AI assistants that need up-to-date information with smart reasoning capabilities.

✨ Features

  • 🧠 Reasoning Model Support: Full compatibility with OpenAI's latest reasoning models (gpt-5, gpt-5-mini, gpt-5-nano, o3, o4-mini)
  • ⚡ Smart Effort Control: Intelligent reasoning_effort defaults based on use case
  • 🔄 Multi-Mode Search: Fast iterations with gpt-5-mini or deep research with gpt-5
  • 🌍 Localized Results: Support for location-based search customization
  • 📝 Rich Descriptions: Complete parameter documentation for easy integration
  • 🔧 Flexible Configuration: Environment variable support for easy deployment

🚀 Quick Start

One-Click Installation for Claude Desktop

OPENAI_API_KEY=sk-xxxx uvx --with openai-websearch-mcp openai-websearch-mcp-install

Replace sk-xxxx with your OpenAI API key from the OpenAI Platform.

⚙️ Configuration

Claude Desktop

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "openai-websearch-mcp": {
      "command": "uvx",
      "args": ["openai-websearch-mcp"],
      "env": {
        "OPENAI_API_KEY": "your-api-key-here",
        "OPENAI_DEFAULT_MODEL": "gpt-5-mini"
      }
    }
  }
}

Cursor

Add to your MCP settings in Cursor:

  1. Open Cursor Settings (Cmd/Ctrl + ,)
  2. Search for "MCP" or go to Extensions → MCP
  3. Add server configuration:
{
  "mcpServers": {
    "openai-websearch-mcp": {
      "command": "uvx",
      "args": ["openai-websearch-mcp"],
      "env": {
        "OPENAI_API_KEY": "your-api-key-here",
        "OPENAI_DEFAULT_MODEL": "gpt-5-mini"
      }
    }
  }
}

Claude Code

Claude Code automatically detects MCP servers configured for Claude Desktop. Use the same configuration as above for Claude Desktop.

Local Development

For local testing, use the absolute path to your virtual environment:

{
  "mcpServers": {
    "openai-websearch-mcp": {
      "command": "/path/to/your/project/.venv/bin/python",
      "args": ["-m", "openai_websearch_mcp"],
      "env": {
        "OPENAI_API_KEY": "your-api-key-here",
        "OPENAI_DEFAULT_MODEL": "gpt-5-mini",
        "PYTHONPATH": "/path/to/your/project/src"
      }
    }
  }
}

🛠️ Available Tools

openai_web_search

Intelligent web search with reasoning model support.

Parameters

ParameterTypeDescriptionDefault
inputstringThe search query or question to search forRequired
modelstringAI model to use. Supports gpt-4o, gpt-4o-mini, gpt-5, gpt-5-mini, gpt-5-nano, o3, o4-minigpt-5-mini
reasoning_effortstringReasoning effort level: low, medium, high, minimalSmart default
typestringWeb search API versionweb_search_preview
search_context_sizestringContext amount: low, medium, highmedium
user_locationobjectOptional location for localized resultsnull

💬 Usage Examples

Once configured, simply ask your AI assistant to search for information using natural language:

> "Search for the latest developments in AI reasoning models using openai_web_search"

Deep Research

> "Use openai_web_search with gpt-5 and high reasoning effort to provide a comprehensive analysis of quantum computing breakthroughs"

> "Search for local tech meetups in San Francisco this week using openai_web_search"

The AI assistant will automatically use the openai_web_search tool with appropriate parameters based on your request.

🤖 Model Selection Guide

Quick Multi-Round Searches 🚀

  • Recommended: gpt-5-mini with reasoning_effort: "low"
  • Use Case: Fast iterations, real-time information, multiple quick queries
  • Benefits: Lower latency, cost-effective for frequent searches

Deep Research 🔬

  • Recommended: gpt-5 with reasoning_effort: "medium" or "high"
  • Use Case: Comprehensive analysis, complex topics, detailed investigation
  • Benefits: Multi-round reasoned results, no need for agent iterations

Model Comparison

ModelReasoningDefault EffortBest For
gpt-4oN/AStandard search
gpt-4o-miniN/ABasic queries
gpt-5-minilowFast iterations
gpt-5mediumDeep research
gpt-5-nanomediumBalanced approach
o3mediumAdvanced reasoning
o4-minimediumEfficient reasoning

📦 Installation

# Install and run directly
uvx openai-websearch-mcp

# Or install globally
uvx install openai-websearch-mcp

Using pip

# Install from PyPI
pip install openai-websearch-mcp

# Run the server
python -m openai_websearch_mcp

From Source

# Clone the repository
git clone https://github.com/yourusername/openai-websearch-mcp.git
cd openai-websearch-mcp

# Install dependencies
uv sync

# Run in development mode
uv run python -m openai_websearch_mcp

👩‍💻 Development

Setup Development Environment

# Clone and setup
git clone https://github.com/yourusername/openai-websearch-mcp.git
cd openai-websearch-mcp

# Create virtual environment and install dependencies
uv sync

# Run tests
uv run python -m pytest

# Install in development mode
uv pip install -e .

Environment Variables

VariableDescriptionDefault
OPENAI_API_KEYYour OpenAI API keyRequired
OPENAI_DEFAULT_MODELDefault model to usegpt-5-mini

🐛 Debugging

Using MCP Inspector

# For uvx installations
npx @modelcontextprotocol/inspector uvx openai-websearch-mcp

# For pip installations
npx @modelcontextprotocol/inspector python -m openai_websearch_mcp

Common Issues

Issue: "Unsupported parameter: 'reasoning.effort'" Solution: This occurs when using non-reasoning models (gpt-4o, gpt-4o-mini) with reasoning_effort parameter. The server automatically handles this by only applying reasoning parameters to compatible models.

Issue: "No module named 'openai_websearch_mcp'" Solution: Ensure you've installed the package correctly and your Python path includes the package location.

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments


Co-Authored-By: Claude [email protected]/[email protected]

MCP Index is your go-to directory for Model Context Protocol servers. Discover and integrate powerful MCP solutions to enhance AI applications like Claude, Cursor, and Cline. Find official and community servers with integration guides and compatibility details.
Copyright © 2025