Wenyan MCP

Visit Repo
212
Wenyan MCP Server, which lets AI automatically format Markdown articles and publish them to WeChat GZH.
Author:@caol64
Updated at:

Other Tools and Integrations

文颜 MCP Server

logo

Overview

文颜 MCP Server 是一个基于模型上下文协议(Model Context Protocol, MCP)的服务器组件,支持将 Markdown 格式的文章发布至微信公众号草稿箱,并使用与 文颜 相同的主题系统进行排版。

https://github.com/user-attachments/assets/2c355f76-f313-48a7-9c31-f0f69e5ec207

使用场景:

支持的主题效果预览:

Features

  • 列出并选择支持的文章主题
  • 使用内置主题对 Markdown 内容排版
  • 发布文章到微信公众号草稿箱
  • 自动上传本地或网络图片

使用方式

方式一:本地运行

编译

确保已安装 Node.js 环境:

git clone https://github.com/caol64/wenyan-mcp.git
cd wenyan-mcp

npm install
npx tsc -b && npm run copy-assets

与 MCP Client 集成

在你的 MCP 配置文件中加入以下内容:

{
  "mcpServers": {
    "wenyan-mcp": {
      "name": "公众号助手",
      "command": "node",
      "args": [
        "Your/path/to/wenyan-mcp/dist/index.js"
      ],
      "env": {
        "WECHAT_APP_ID": "your_app_id",
        "WECHAT_APP_SECRET": "your_app_secret"
      }
    }
  }
}

> 说明: > > * WECHAT_APP_ID 微信公众号平台的 App ID > * WECHAT_APP_SECRET 微信平台的 App Secret


方式二:使用 Docker 运行(推荐)

适合部署到服务器环境,或与本地 AI 工具链集成。

构建镜像

docker build -t wenyan-mcp .

与 MCP Client 集成

在你的 MCP 配置文件中加入以下内容:

{
  "mcpServers": {
    "wenyan-mcp": {
      "name": "公众号助手",
      "command": "docker",
      "args": [
        "run",
        "--rm",
        "-i",
        "-v", "/your/host/image/path:/mnt/host-downloads",
        "-e", "WECHAT_APP_ID=your_app_id",
        "-e", "WECHAT_APP_SECRET=your_app_secret",
        "-e", "HOST_IMAGE_PATH=/your/host/image/path",
        "wenyan-mcp"
      ]
    }
  }
}

> 说明: > > * -v 挂载宿主机目录,使容器内部可以访问本地图片。与环境变量HOST_IMAGE_PATH保持一致。你的 Markdown 文章内的本地图片应该都放置在该目录中,docker会自动将它们映射到容器内。容器无法读取在该目录以外的图片。 > * -e 注入docker容器的环境变量: > * WECHAT_APP_ID 微信公众号平台的 App ID > * WECHAT_APP_SECRET 微信平台的 App Secret > * HOST_IMAGE_PATH 宿主机图片目录


微信公众号 IP 白名单

请务必将服务器 IP 加入公众号平台的 IP 白名单,以确保上传接口调用成功。 详细配置说明请参考:https://yuzhi.tech/docs/wenyan/upload


配置说明(Frontmatter)

为了可以正确上传文章,需要在每一篇 Markdown 文章的开头添加一段frontmatter,提供titlecover两个字段:

---
title: 在本地跑一个大语言模型(2) - 给模型提供外部知识库
cover: /Users/lei/Downloads/result_image.jpg
---
  • title 是文章标题,必填。

  • cover 是文章封面,支持本地路径和网络图片:

    • 如果正文有至少一张图片,可省略,此时将使用其中一张作为封面;
    • 如果正文无图片,则必须提供 cover。

关于图片自动上传

  • 支持图片路径:

    • 本地路径(如:/Users/lei/Downloads/result_image.jpg
    • 网络路径(如:https://example.com/image.jpg

示例文章格式

---
title: 在本地跑一个大语言模型(2) - 给模型提供外部知识库
description: Make your local large language models (LLMs) smarter! This guide shows how to use LangChain and RAG to let them retrieve data from external knowledge bases, improving answer accuracy.
cover: /Users/lei/Downloads/result_image.jpg
---

在[上一篇文章](https://babyno.top/posts/2024/02/running-a-large-language-model-locally/)中,我们展示了如何在本地运行大型语言模型。本篇将介绍如何让模型从外部知识库中检索定制数据,提升答题准确率,让它看起来更“智能”。

## 准备模型

访问 `Ollama` 的模型页面,搜索 `qwen`,我们使用支持中文语义的“[通义千问](https://ollama.com/library/qwen:7b)”模型进行实验。

![](https://mmbiz.qpic.cn/mmbiz_jpg/Jsq9IicjScDVUjkPc6O22ZMvmaZUzof5bLDjMyLg2HeAXd0icTvlqtL7oiarSlOicTtiaiacIxpVOV1EeMKl96PhRPPw/640?wx_fmt=jpeg)

如需更多功能扩展或反馈建议,欢迎提 issue

MCP Index is your go-to directory for Model Context Protocol servers. Discover and integrate powerful MCP solutions to enhance AI applications like Claude, Cursor, and Cline. Find official and community servers with integration guides and compatibility details.
Copyright © 2025